We can entend this to some ving extensions. We compare $B = \mathbb{Z}[1^{-3}] = \mathbb{Z} = A \& B = \frac{k[x,y]}{y^{1}-x^{3}} \cong k[x][[x^{3}]]$ v_{1} k[x] = A.

Then correspondence theorem says that $\{m \in B\} \stackrel{(i)}{\longleftrightarrow} \{m = k[x,y] \mid (y^{-},x^{3}) \leq m\}$

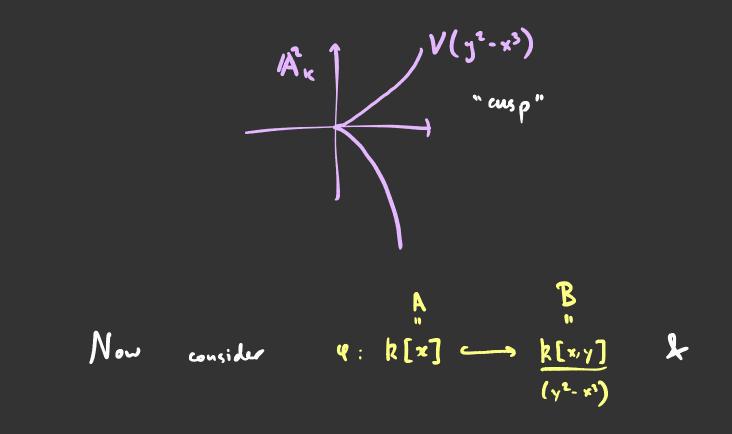
note since the correspondence respects inclusion, it follows that maximals correspond to maximals. One also shows easily primes correspond to primes.

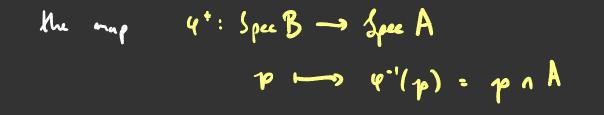
Ans
mSpee
$$B = \{m_{a,b} = (x - a, y - b) | (y^2 - x^3) \in m_{a,b} \}.$$

Men thinking of $m_{a,b} = ker(k[x,y] \xrightarrow{q_{a,b}} k), :t$
 $y \xrightarrow{q_{a,b}} b$

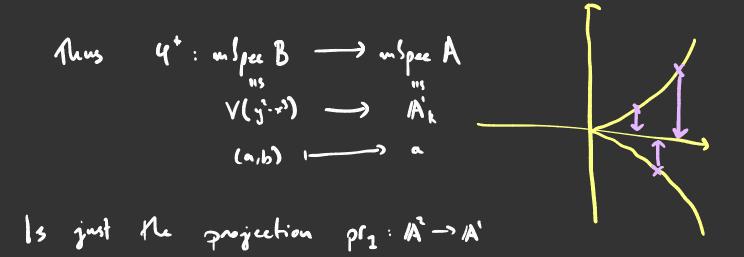
is clear that $(y^2 - x^3) \leq m_{a,b} \leq (y^2 - x^3) = b^2 - a^3 = 0$.

$$\begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & & \\ & & &$$





which on maximals: $(x-a, y-b) \wedge k[x] = (x-a)$,

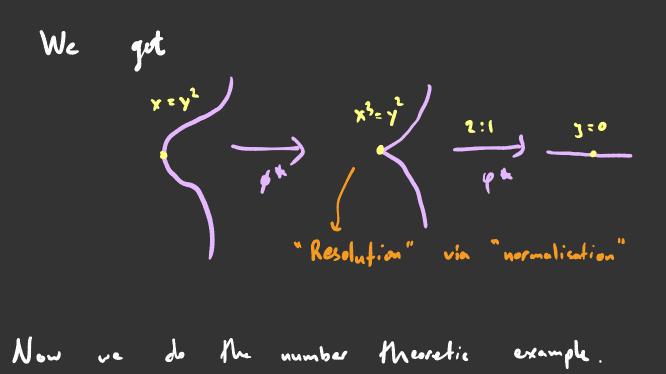


which we can see as $k[x][\sqrt{x}] = k[x][\sqrt{x}]$ $\frac{k[x,y]}{(x-y^2)}$ Letting $t = \frac{x}{7}$.

Area similar to the calculation above with have

$$\phi^*: m \text{Spec } k[t] \longrightarrow m \text{Spec } B$$

 $\alpha \longmapsto (a^2, a^3)$



Let $B := \mathbb{Z}[\overline{1-3}] \cong \mathbb{Z} = \mathbb{A}$. Call the inclusion $u : \mathbb{Z} \longrightarrow \mathbb{Z}[\overline{1-3}]$. And consider the map $u^{+}: \text{Spee } \mathbb{Z}[\overline{1-3}] \longrightarrow \text{Spee } \mathbb{Z}$ $p \longmapsto p \cap \mathbb{Z}$ As $\text{Spee } \mathbb{Z} = \{(2), (3), (5), \dots\} \cup \{(0)\}, \text{ we}$ See that $p \cap \mathbb{Z} = (p)$ for some prime

- $p \in \mathbb{Z}$, it's easy to see (o) $\in \mathbb{Z}[-5]$ is the only ideal sto. $4^{+}(p) = (0)$.
 - We say 10 lies over p.
- From the appendix we know p = (b + a 5)(b a 3) f_{+} f_{-}
- <> p = 1 mod 6.
 - For example, 7: (2+5)(2-5).

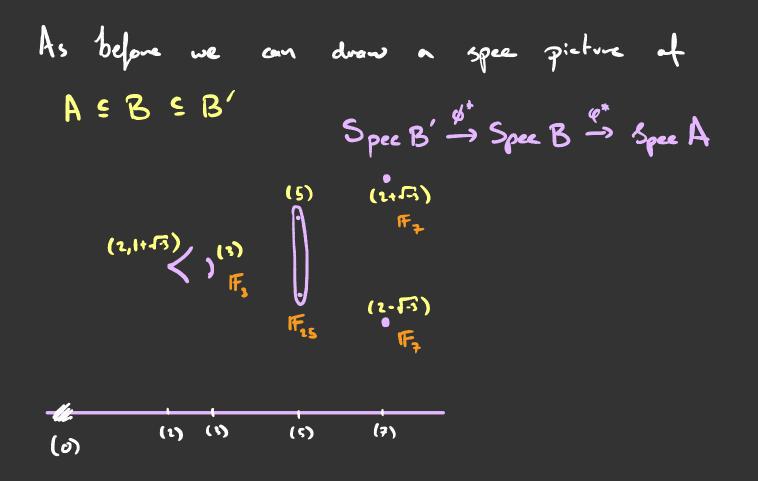
Now I claim $p \neq 2, 3,$ then either $p = f_{+} \cdot f_{-}, f_{\pm}$ prime elements, or p prime in B. That is: $\left| \left((q^{*})^{-1} (p) \right) \leq 2$.

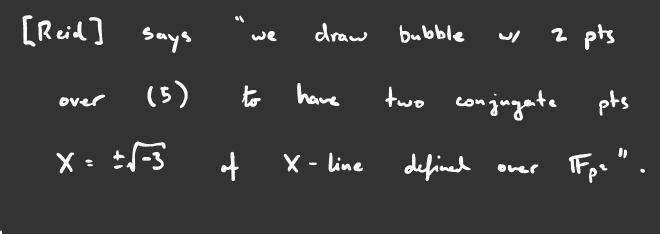
p≡1 mod6 => p = f + · f _ . Consider Now let $\mathbb{Z}[x] \longrightarrow \mathbb{Z}[f^{-s}] : B \longrightarrow B$ (f_{\pm}) $\frac{\mathbb{Z}[x]}{(x^2+3)} \xrightarrow{\text{p}}_{\text{induced by He ison.}}$ $\frac{1}{1}$ Theorem Since $A(p) = d(x^2 + 3) = 0$ $\mathbb{F}_{p}[x] \longrightarrow \mathbb{F}_{p}[x]$ (x² + 3) Since $p = 3a^2 + b^2 = 0$ in \mathbb{F}_p , $\ker(\beta) = \left(x \mp \frac{b^2}{a^2}\right)$

Mues (count elemente) $B \cong \mathbb{F}_{p}$.

Aren B' is an ED => UFD.

Now prime analysis is the same as B
except over (2) we have
$$B'_{(2)} \cong \mathbb{F}_{2}[x] \cong \mathbb{F}_{4}$$





I don't get this yet.