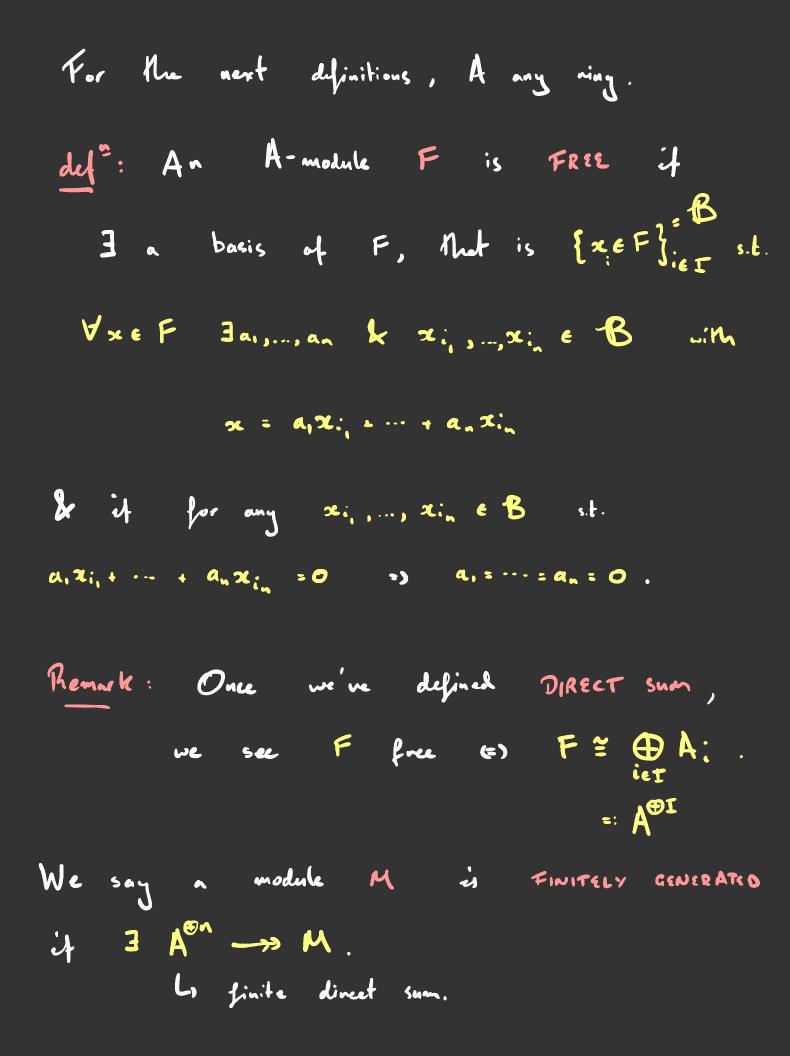


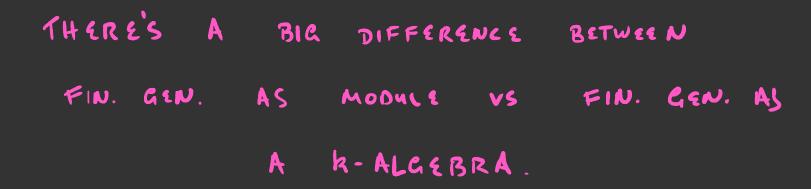
Consider the k-algebra
$$A = k[x, y]$$
.
We can draw this example very aicaly, it
becomes a useful testing ground for theorems.
We write out a k-basis
 $y^{k} = xy^{k} = x^{k}y^{k} = x^{k}y^{k}$
 $y^{k} = xy^{k} = x^{k}y^{k}$
 $y^{k} = x^{k}y^{k} = x^{k}y^{k}$
 $y^{k} = x^{k} = x^{k} = x^{k}$
We can draw these ideals
 $essily$.

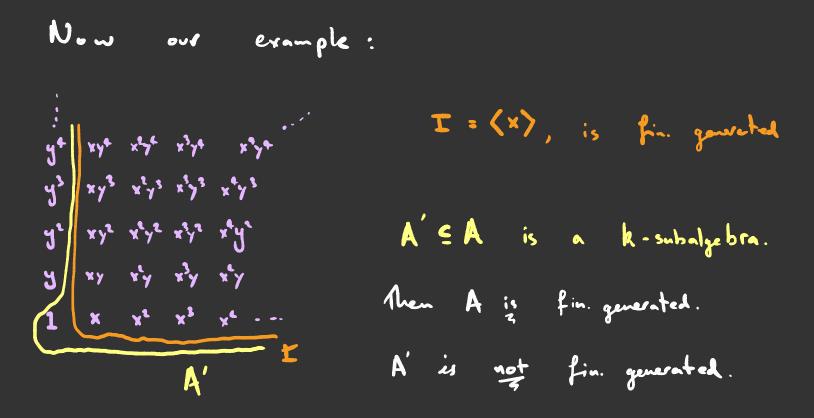
Area dim $A_{j} = x^{k}$ monomials value orange
 $x^{k} = 5$

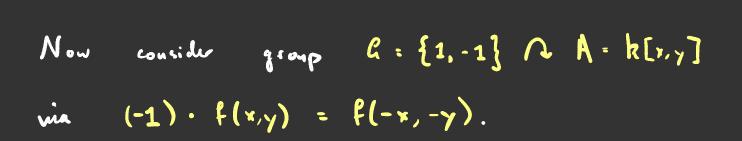


Now an ideal, that is, a submodule IEA,
in finitely generated (s)
$$\exists f_{1}, ..., f_{r} \in A$$
 s.t.
 $I = (f_{1}, ..., f_{r})$.
Hilberti Basis the"
IMPORTANT FACT: Every ideal of $k[x_{1}, ..., x_{n}]$ is
finitely generated, we'll prove
this later.

def: A k-algebra A is finitely guaranted
if
$$\exists a_1, ..., a_n \in A$$
 s.t. $\forall a \in A$
 $\exists p(x_1, ..., x_n) \in k[x_1, ..., x_n]$ s.t. $a = p(a_1, ..., a_n)$.
Equivalently, $\exists k[x_1, ..., x_n] \longrightarrow A$, a surger
 k -algebra homomorphism,

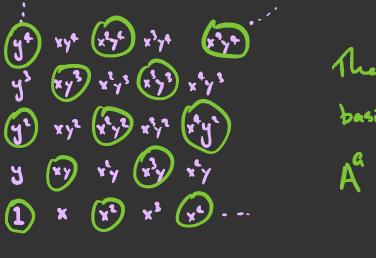






We want to understand

$$A^{G} = \{f \in A \mid g \cdot f = f \quad \forall g \in G \}.$$



1 x x¹ x³ x⁴ · --

These monomials form a
basis for
$$A^{G}$$
.
 $A^{G} = k[x^{2}, xy, y^{2}]$
 $\equiv k[u, v, w]$
 $(uv - v^{2})$

So we see A^a is fin. gen.

Moreover, A^{e} is a free module over $h[x^{*}, y^{*}]$ $(q^{e}) \times y^{e} \bigoplus x^{*}y^{e} \bigoplus y^{*}$ $(q^{e}) \times y^{*} \bigoplus x^{*}y^{*} \bigoplus x^{*}y^{*}$ $(q^{e}) \times y^{*} \bigoplus x^{*}y^{*} \bigoplus x^{*}y^{*}$ $(q^{e}) \times y^{*} \bigoplus x^{*}y^{*} \bigoplus x^{*}y^{*}$ $(q^{e}) \times y^{*} \bigoplus x^{*}y^{*} \bigoplus x^{*}y^{*}$