
ICMS LECTURE 1

PRAISE ADEYEMO AND DOMINIC BUNNETT

1. Lecture 1: Lattice Polytopes and Cones

The aim of this lecture is to cover the following topics:

(1) Basic definitions and examples

(2) Properties of Polytopes

(3) Newton polytopes and related geometry

Our main references will be the first chapters of [BR15] and Chapter 2.2 in [CLS11].

1.1. Basics.

Definition 1.1. A subset P ⊂ Rn is a rational polytope if

P = Conv(S) := {λ1m1 + · · ·+ λrmr | λi ≥ 0,
∑
i

λi = 1},

where S = {m1, . . . ,md} ⊂ Qn is a finite set.

A subset C ⊂ Rn is called a rational cone if

C = Cone(S) = {λ1m1 + · · ·+ λrmr | λi ≥ 0},

where S, as before, is a finite set. If additionally S ⊂ Zn then we replace rational with lattice.

This is the so called “V-description” of a polytope, the V standing for vertices, which we will

formally define late in Definition 1.5. There is another description as a bounded intersection

of half-spaces, the so-called “H-description” which we will shortly see.

Remark 1.2. Due to time restrictions, we will only talk about polytopes in this lecture,

however the following basic definitions (for example, faces, dimension, and many more) can

be made for cones. We refer to [CLS11, Chapter 1] for a thorough treatment.

Definition 1.3. Given codimension 1 hyperplanes Hi in Rn defined by normal vectors ui ∈
Qn, then the intersection of all their positive half-spaces H+

i is a rational polyhedron.

We specify the normal vector, so that the positive half-space is well defined.

From now we assume that everything is rational and stop writing it. Note that a polyhedron

can be unbounded. We then have the following important theorem.

Theorem 1.4. A bounded polyhedron is a polytope and any polytope is a bounded polyhedron.
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Let’s unpack this. Given a polyhedron P = ∩iH+
i ⊂ Rn which is bounded, there exists a

finite set S ⊂ Qn such that P = Conv(S). Conversely, given a polytope P = Conv(S), then

there exist half-spaces H+
i such that P is the intersection of all H+

i .

There is no easy way to write down algorithm to go from one to the other, nor is there

an easy proof. We refer to [BR15] for a nice run through of this. However, there do exist

algorithms already implemented in sage and polymake which we will use as we frequently

bounce between the two descriptions.

A hyperplane is completely described by a normal vector u ∈ Qn and a number b ∈ Q:

Hu,a = {m ∈ Rn | 〈m,u〉 = b}

and the associated half-space is

H+
u,a = {m ∈ Rn | 〈m,u〉 ≥ b}.

We define a supporting hyperplane of a polytope P to be a codimension 1 hyperplane

H ⊂ Rn such that

P ⊂ H+.

With this we can define faces of the polytope.

Definition 1.5. Given a polytope P , a face of P is a subset σ ⊂ P which is the intersection

of P with a supporting hyperplane, that is:

σ = P ∩H.

Note that the face of a polytope is again a polytope.

Definition 1.6. The dimension of a polytope P is the dimension of the smallest affine

subspace Rm ⊂ Rn containing P .

While developing the theory we will usually assume that P ⊂ Rn is full dimensional, that

is dimP = n. There’s normally no harm in this, as when P is not full dimensional, we can

simply move P so that it contains the origin, so that the smallest affine subspace containing

P is a vector subspace and consider P to be full dimensional in this subspace. There are

many cases however, when we have to pay attention to whether or not the polytope is full

dimensional or not. Luckily, this property is easily checkable.

Definition 1.7. Consider a polytope P . A k-dimensional face of P is called a k-face. A

0-face is called a vertex. A (dimP − 1)-face is called a facet.

Denote the number of k-faces by fk(P ). We collect this data in the f -vector.

f(P ) = (f0(P ), . . . , fdimP (P ))

Remark 1.8. When P is full dimensional, we can use the facets to give a unique H-description

of our polytope. Indeed, each facet F ⊂ P has a unique supporting hyperplane HF = HuF ,aF

where F = HF ∩ P and (uF , aF ) is unique up to multiple by a positive number.

Given a polytope P , its lattice points P ∩ Zn are of fundamental importance.
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Definition 1.9. Given a polytope P = Conv(m1, . . . ,mr) and an integer t ∈ Z>0, we define

the tth dilation of P to be tP := Conv(tm1, . . . , tmr). Using this definition we define the

lattice point counting function

Lp(t) := |tP ∩ Zn|,

that is the number of lattice points in the tth dilation of P .

Proposition 1.10. Given a lattice polytope P ⊂ Rn, then LP (t) ∈ Q[t] that is, the lattice

point counting function is a polynomial with rational coefficients. Moreover, its degree as a

polynomial is dimP .

In light of this last proposition, we call LP (t) the Ehrhart polynomial after Eugène Ehrhart,

who proved the main structure theorem concerning these functions [BR15]. The study of these

objects can be tracked back to Euler, although he probably did not think of himself as studying

lattice point counting functions.

Definition 1.11. We define the Ehrhart Series to be

EhrP (z) =
∑
t≥0

LP (t)zt.

Using the Ehrhart series of a polynomial we can define another very important invariant

of a polytope. In order to do this, we need to express the Ehrhart series as a fraction of

rational polynomials. This is a basic technique from the theory of generating series which is

an extremely rich area. See [BR15, Chapter 1].

Definition 1.12. h∗-vector - to be done.

1.2. Examples. Let’s have a look at some basic examples.

Definition 1.13. Let n ≥ 1, we define the standard n-simplex ∆n := Conv(e0, . . . , en) ⊂
Rn+1.

Fix n = 1 and write ∆ = ∆1 for the 1-simplex, which is just the line segment connecting

(1, 0) and (0, 1). Let’s compute the invariants above.

In this case, it’s really quite easy to see from the pictures that L∆(t) = t + 1 and thus

Ehr∆(z) =
∑

t≥0(t + 1)zt. However, let us do this using a technique which will useful going

forward.

You will show in Exercise 1 that 1
1−z = 1 + z + z2 + · · · in the ring of formal series. Thus,

in Z[[z]], we have that

1

(1− z)2
= (1 + z + z2 + · · · ) · (1 + z + z2 + · · · )

= 1 + 2z + 3z2 + · · ·+ (t+ 1)zt + · · ·

= Ehr∆(z) .

This is no coincidence! The coefficient for zt is exactly the number of ways we can make

up t from two smaller numbers (keeping order in mind), that is, t = 0 + t = 1 + (t − 1) =

2 + (t− 2) = · · · = t+ 0, corresponding to lattice points (0, t), (1, t− 1), . . . , (t, 0).
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In the exercises we will compute L∆n(t) and Ehr∆n(z) using this method for a general

n > 0.

1.3. Properties. Now we will discuss a few more important properties of polytopes.

Definition 1.14. A polytope P ⊂ Rn has the Integer Decomposition Property, the IDP

for short, if for every k ∈ N and p ∈ kP ∩ Zn there exist x1, . . . , xk ∈ P ∩ Zn such that

p = x1 + · · ·+ xk.

This means that every lattice point of every dilation decomposes as a sum of lattice points of

P . A word of warning, this property has a few different names in the literature, in particular,

a normal polytope is a polytope that possesses the IDP.

This property is very important. It tells you something about the geometry of the asso-

ciated toric variety (which we will explore later) and has important implications for integer

programming (which we won’t explore later).

This fundamental property remains largely mysterious and there are many open questions

as to whether or not classes of well known polytopes have the IDP. There are a few positive

results, one of which is the following.

Theorem 1.15. For every k ≥ dimP − 1, the dilation kP has the IDP.

Note that in general if kP has the IDP, that is not necessarily the case for (k + 1)P , see

[CHHH14].

Corollary 1.16. Every polytope of dimension 2 has the IDP. (In particular, there is no toric

embedding of a toric surface which is not projectively normal.)

Definition 1.17. We say a polytope P ⊂ Rn is very ample if there exists a k0 ∈ N such

that for every k ≥ k0 and every p ∈ kP ∩ Zn, there exist x1, . . . , xn ∈ P ∩ Zn such that

p = x1 + · · ·+ xk.

So we see immediately that (IDP) =⇒ very ample and that, contrary to the IDP, if kP is

very ample, then (k + 1)P is also very ample.

Note that the converse does not hold, that is, there exists polytopes which are very ample

but don’t have the IDP [LMe17]. Also, it follows immediately from Theorem 1.15, that for

each k ≥ dimP − 1, we have kP is very ample.

Now we give a few equivalent definitions of the above properties. First, we give a useful

and visual criterion for the IDP by considering the cone over the polytope

C(P ) = Cone(({1} × P ) ∩ (Z× Zn)) ⊂ R× Rn .

Lemma 1.18. A polytope has the IDP if and only if for every (k, p) ∈ C(P ) ∩ Zn+1 there

exists (1, x1), . . . , (1, xk) ∈ {1} × P ∩ Zn+1 such that (k, p) =
∑

(1, xi).

The proof is left as an easy exercise.

Now we give an alternative formulation of very ample. We first need a quick definition.
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Definition 1.19. To each vertex v ∈ P , we define the vertex semigroup

Sv := N((P ∩ Zn)− v) ⊂ Zn.

Then we say that Sv is saturated if whenever kp ∈ Sv for some k ∈ N and p ∈ Zn, then p ∈ Sv.

Proposition 1.20. A polytope P is very ample if and only if the semigroup generated at each

vertex is saturated. Equivalently, the Hilbert basis for C(P ) is contained inside {1}×P ∩Zn+1.

We can then further define the holes of a given polytope

h(P ) = C(P ) \ 〈{1} × P ∩ Zn+1〉.

The holes keep track of how far our polytope is from having the IDP. Higashitani has some

results on the number of holes [Hig14].

Remark 1.21. Note that all the definitions so far are invariant under translation. So that,

especially for the exercises, you can translate your polytope to a chosen place in the lattice,

often this means moving the origin inside the polytope (If that’s possible).

Now we define the polar dual and use it to define reflexivity, our next property of interest.

Definition 1.22. Let P be a lattice polytope. Define the polar dual of P to be

P ∗ = Conv(
1

aF
uF | F a facet)

Note that P ∗∗ = P .

A polytope is called reflexive if P ∗ is a lattice polytope.

Proposition 1.23. A polytope is reflexive if and only if the origin is the unique interior

lattice point.

1.4. Newton Polytopes and Toric Geometry. We now shift our perspective. We think

of Nn ⊂ Zn as the space of all exponent vectors, that is, we identity a point m ∈ Nn with its

corresponding monomial xm = xm1
1 , . . . , xmn

n .

Definition 1.24. Given a polynomial f ∈ k[x1, . . . , xn] we write it as∑
m∈Nn

cm(f)xm,

where only finitely many of the coefficients are non-zero. We define its support to be Supp(f) =

{m ∈ Nn | cm(f) 6= 0}.

The support of a polynomial are the monomials which appear in f . Using our new per-

spective, we consider this as a set of lattice points.

Definition 1.25. Given a polynomial f ∈ k[x1, . . . , xn], we define its Newton Polytope to be

NP(f) = Conv(Supp(f)).

We say that f is saturated in its Newton Polytope if NP(f) ∩ Zn = Supp(f), we often

abbreviate this to SNP.



6 PRAISE ADEYEMO AND DOMINIC BUNNETT

Given a very ample polytope P ⊂ Zn, we can define its associated toric variety as follows.

Let us denote the lattice points of P by A = P ∩ Zn and consider vector space CA indexed

by A. Then we can define

ΦA :(C∗)n −→ P(CA)

(a) 7−→ [(am)m∈A] .

Then we can define

XA := ΦA((C∗)n) ⊂ P(CA) .

This is the toric variety associated to P .

Example 1.26. Take P = d∆1 ⊂ R2. Then

ΦA : (x0, x1) 7−→ (xd0 : xd−1
0 x1 : · · · : xd1)

is the Veronese embedding of P1. This generalises to give that d∆n gives the dth Veronese

embedding of Pn.

The best way to understand this is through loads of examples. We will continue with this

later.

Remark 1.27. Note that it is not obvious at all why we required P to be very ample. Indeed,

the above construction works for any polytope (actually any point configuration A) and we

get a toric variety. However, the theory is much better behaved when we take A to be the

lattice points of a very ample polytope. That’s all we will say at this point, see [CLS11] for

the canonical reference and [GKZ08, Chapter 5] for a very good but brief introduction.



ICMS LECTURE 1 7

Potential future topics

The theorem of Hochster? The following is highly non-trivial.

Theorem 1.28. Every toric variety is Cohen-Macaulay.

Constructions of non-very ample and non-normal simplices?



Post lecture exercise

In this exercise you will compute the Ehrhart polynomial and series of two polytopes.

Confirm your answers using a math software system of your choice (for example, sage or

polymake).

Let P = cube(n) =
∏n

1 [0, 1].

(1) Prove that LP (t) = (t+1)n. Write out the expansion in terms of binomial coefficients.

(2) Prove that

(−1)nLP (−t) = LP ◦(t) .

(3) Show that the Ehrhart Series can be described as follows:

EhrP (z) =
1

z

∑
t≥0

tnzt .

(4) Let f(P ) = (f0, . . . , fn) be the f -vector. Using a computer, compute

fk · 2k−n for a few numbers. Prove a formula for fk in terms of n and k.



Exercises to Lecture 1

(1) Let P = ∆n = Conv(e0, . . . , en) ⊂ Rn+1. Compare with Example 1.2 in the lectures

for the case n = 2.

(a) Show that (1− z)(1 + z + z2 + · · ·+ zn) = 1− zn+1.

(b) Show that in the power series ring k[[z]] that we have

1

1− z
=
∑
i≥0

zi .

(c) Using the computation in the last exercise, write out the expansion of
1

(1−z)n ∈ k[[z]] and conclude that

EhrP (z) =
1

(1− z)n
.

Now compute the Taylor expansion around 0 (assume k = C if you like) and show

that

LP (t) = const

(
n+ t

t

)
.

(2) Let f, g ∈ C[x1, . . . , xn]. Prove that

NP(f · g) = NP(f) + NP(g) ,

where the right hand side denotes the Minkowski sum of two polytopes.

(3) Prove that a one-dimensional Lattice polytope has the IDP.

(4*) Prove that a lattice polytope of dimension d such that each edge has at least d lattice

points is very ample.

Hint: Use the saturated semi-group definition of very ampleness. Center each vertex

at the origin, and try and fit a small polytope into that vertex, such that several (how

many?) dilations are still inside your big polytope.
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