ALGEBRA 2

ÜBUNGSBLATT 1

- (1) (a) Describe the zero-divisors, nilpotent elements and the units in the ring $\mathbb{Z}/36\mathbb{Z}$.
 - (b) Show that for a finite ring A, that is $|A| < \infty$, each element is either a unit or a zero divisor.
 - (c) Show by an example that this fails to be true for infinite rings.

Definition: An ideal $\mathfrak{p} \subset A$ is called *prime* if A/\mathfrak{p} is an integral domain. An ideal $\mathfrak{m} \subset A$ is called *maximal* if A/\mathfrak{m} is a field. Compare with [Atiyah-MacDonald, page 3].

- (2) (a) Let k[X] denote the polynomial ring with variable X over a field k. Show that every nonzero prime ideal of k[X] is a maximal ideal.
 - (b) Is this still true if we replace k by \mathbb{Z} ?
- (3) Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.
- (4) Prove that the following are equivalent:
 - (a) A has exactly one prime ideal.
 - (b) every element is either a unit or nilpotent.
 - (c) A/\mathfrak{N} is a field. (Recall \mathfrak{N} is the nilpotent radical.)
- (5) Let k be an infinite field and consider a polynomial $f(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$. Prove that $f(a_1, \ldots, a_n) = 0$ for every $(a_1, \ldots, a_n) \in k^n$ if and only if f = 0 is the zero polynomial.

Hint: Note that for one variable, this is just the statement that a univariate polynomial has only finitely many roots. Then consider f as a polynomial in n-1 variables over the ring $k[x_n]$, and argue via induction.