ALGEBRA 2

ÜBUNGSBLATT 10

- (1) Let X = Spec(A) and $Y \subset X$ be a subset. Show the following.
 - (a) Let $x = \mathfrak{p}_x \in X$ be a point. Then $\overline{\{x\}} = V(\mathfrak{p}_x)$. Conclude that x is a *closed point* if and only if \mathfrak{p}_x is maximal.
 - (b) $V(I(Y)) = \overline{Y}$.
 - (c) Y is dense in X if and only if $I(Y) = \mathcal{N}(A)$, the nilpotent radical of A.
 - (d) Let X be irreducible. Every non-empty open subset U of X is dense.
 - (e) Given a multiplicatively closed set $S \subset A$. Then $S^{-1} \operatorname{rad}(\mathfrak{a}) = \operatorname{rad}(S^{-1}\mathfrak{a})$.
- (2) Let B be a flat A-algebra via the morphism $\varphi : A \to B$. Show that the following are equivalent.
 - (a) $\mathfrak{a}^{ec} = \mathfrak{a}$ for all ideals \mathfrak{a} .
 - (b) $\varphi^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective.
 - (c) For every maximal ideal \mathfrak{m} it holds that $\mathfrak{m}^e \neq (1)$.
 - (d) If M is any non-zero module, then $M_B \neq 0$.
 - (e) For every A-module M, the mapping

$$M \longrightarrow M_B, \quad x \longmapsto 1 \otimes x$$

is injective.

Hint: See the hint accompanying Exercise 3.16 in [AM].

- (3) Let $f: B \to B'$ be a morphism of A-algebras and let C be an A-algebra. Show that if f is integral, then $f \otimes id_C : B \otimes_A C \to B' \otimes_A C$ is integral.
- (4) Let $A \subseteq B$ be rings with B integral over A. Show that
 - (a) If $x \in A$ is a unit in B, then it is a unit in A.
 - (b) The Jacobson radical of A is the contraction of the Jacobson radical of B.
- (5) Prove that the ring extension Z ⊂ Z[¹/₂] is not integral. Prove that for α = √2 + √3, the ring extension Z ⊂ Z[α] is integral. *Hint: It suffices to show* α *is integral over* Z.