ALGEBRA 2

ÜBUNGSBLATT 2

- (1) (a) There is a ring isomorphism $\mathbb{Z}/(30) \xrightarrow{\cong} \mathbb{Z}/(5) \times \mathbb{Z}/(6)$. Give an explicit inverse to this map.
 - (b) Find a number x such that $x \equiv 2 \mod 5$ and $x \equiv 3 \mod 7$.
- (2) Let A[X] denote the ring of polynomials in the variable X and coefficients in a ring A. Let $f = a_0 + a_1 X + \cdots + a_n X^n$. Prove:
 - (a) f is a unit iff a_0 is a unit in A and a_1, \ldots, a_n are nilpotent.
 - (b) f is nilpotent iff a_0, \ldots, a_n are nilpotent.
 - (c) f is a zero divisor iff there exists a non-zero $a \in A$ such that af = 0.
 - (d) The Jacobson radical of A[X] equals the nilradical of A[X].
- (3) (a) Let p be a prime number and $e \ge 1$ a positive integer. Prove that $\mathbb{Z}/(p^e)$ is a local ring. Prove that it is a field if and only if e = 1.
 - (b) Let k be a field and A = k[[x]] be the ring of formal power series in one variable. Prove that A is a local ring.
- (4) Show that for ideals $\mathfrak{a}, \mathfrak{b}$ of a ring A we have for the radicals

$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$$

The exercises on this page, and any marked with a (*), are bonus exercises. They are optional and are intended as helpful foreshadowing for things which come up later and / or offering some of the applications of commutative algebra.

(6*) Let A be a reduced ring (that is, A is a ring with no nilpotent elements) with finitely many minimal primes \mathfrak{p}_i . Prove that the direct sum of the canonical homomorphisms

$$A \longrightarrow \bigoplus_{i=1}^{n} A/\mathfrak{p}_i$$

is injective. Moreover, show that the image intersects in a non-zero element in each direct summand.

Note: A prime ideal \mathfrak{p} is minimal over an ideal I if $I \subset \mathfrak{p}$ and there is no other prime ideal \mathfrak{q} such that $\mathfrak{q} \subsetneq \mathfrak{p}$. A prime ideal is called minimal if it is minimal over the zero ideal.

(7*) Let $a = (a_1, \ldots, a_n) \in k^n$ where k is a field. Consider the map

$$e_a: k[x_1, \dots, x_n] \to k, \quad f \mapsto f(a).$$

In other words, e_a is the map given by evaluating polynomials at a point $a \in k^n$. Prove that ker $e_a = (x_1 - a_1, \ldots, x_n - a_n)$ and conclude that this ideal is maximal.

Hint: First prove this for a = (0, ..., 0) *and then consider a 'change of coordinate'* isomorphism defined by $x_i \mapsto x_i - a_i$.