ALGEBRA 2

ÜBUNGSBLATT 3

(1) The ring of Gaussian integers $B = \mathbb{Z}[i]$ is defined as the subring of $\mathbb{C} = \mathbb{R}[i]$ given by the elements x = a + bi with $a, b \in \mathbb{Z}$. Show that B together with the norm function $N(x) = a^2 + b^2$ is a Euclidean ring.

That is, for all $x, y \in B$ with $y \neq 0$ there are $q, r \in B$ with x = qy + r and N(r) < N(y). In particular, B is a principal ideal domain and a UFD. Describe all the units in B.

- (2) (a) How are prime ideals of the product ring $A \times B$ related to the prime ideals of A and B?
 - (b) Let n > 1 be an integer. Determine all prime ideals of the residue class ring $\mathbb{Z}/(n)$.
- (3) Let $\mathfrak{a} \leq A$ be an ideal and write $\mathfrak{a}[x] \leq A[x]$ for the extension of \mathfrak{a} under the inclusion homomorphism $A \hookrightarrow A[x]$.
 - (a) Prove that $\mathfrak{p}[x]$ is prime if \mathfrak{p} is prime.
 - (b) Is $\mathfrak{m}[x]$ maximal if \mathfrak{m} is maximal?

The prime spectrum of a ring

Recall that $\text{Spec}(A) = \{ \mathfrak{p} \leq A \mid \mathfrak{p} \text{ prime} \}$ and that for a subset $E \subseteq A$ we defined

 $V(E) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid E \subseteq \mathfrak{p} \}.$

Convince yourself that the sets V(E) satisfy the axioms for the closed sets of a topology. The resulting topology is the *Zariski Topology*.

(4) Draw pictures of Spec \mathbb{Z} , Spec \mathbb{C} and Spec $\mathbb{C}[x]$.

- (5) For each $f \in A$, denote $X = \operatorname{Spec} A$ and $X_f = \operatorname{Spec}(A) V(f)$. Show that
 - (a) $X_f \cap X_g = X_{fg};$
 - (b) $X_f = \emptyset \iff f$ is nilpotent;
 - (c) $X_f = X \iff f$ is a unit;
 - (d) $X_f = X_g \iff \mathbf{r}((f)) = \mathbf{r}((g));$
 - (e) X is quasi-compact (that is, every open covering has a finite subcovering).
 - (f)* Show that the sets X_f form a basis for the Zariski topology.