ALGEBRA 2

ÜBUNGSBLATT 5

Remark. Let

be a commutative, exact diagram. Then as in the snake lemma [AM, Prop. 2.10], with precisely the same proof, there is an exact sequence

$$\ker(f') \to \ker(f) \to \ker(f'') \xrightarrow{d} \operatorname{coker}(f') \to \operatorname{coker}(f) \to \operatorname{coker}(f'').$$

- (1) Let P be an A-module. Show that the following three conditions involving A-modules and A-linear maps are equivalent.
 - (a) For any $g: M \to M''$ surjective and $h: P \to M''$, there is $\tilde{h}: P \to M$ such that $q\tilde{h} = h$.
 - (b) Any short exact sequence $0 \to M' \xrightarrow{f} M \xrightarrow{g} P \to 0$ splits.
 - (c) There is an N such that $P \oplus N$ is free.

0

Modules P satisfying these conditions are called projective.

(2) Let A be a local ring with maximal ideal \mathfrak{m} and residue class $k = A/\mathfrak{m}$. Let M be a finitely generated A-module. Prove that if M is projective then it is free.

Hint: Let $x_1, \ldots, x_n \in M$ be such that the classes $\bar{x}_1, \ldots, \bar{x}_n \in M/\mathfrak{m}M$ form a k-basis. Then x_1, \ldots, x_n is a generating system of M, and it is minimal in the sense that any proper subset does not generate.

- (3) Let $f: M \to N$ be a morphism of A-modules.
 - (a) Show that the kernel of f is an A-module K together with a morphism $i: K \to M$ which is up to (unique) isomorphism uniquely determined by the following "universal property":
 - (i) $f \circ i = 0$.
 - (ii) For any morphism $j: L \to M$ with $f \circ j = 0$ there is a unique morphism $h: L \to K$ such that $j = i \circ h$.
 - (b) Show that any morphism $i: K \to M$ satisfying (a) and (b) is injective.
 - (c) Formulate a similar property for the cokernel. Compare this with the induced morphism property [AM, p. 19] (Homomorphiesatz auf Deutsch).

- (4) Let A be a non-zero ring. Consider an A-linear map $\phi: A^n \to A^m$.
 - (a) Show that if ϕ is surjective then $m \leq n$.
 - (b) Show that if ϕ is an isomorphism then m = n.
 - (c) If ϕ is injective, is it always the case that $n \leq m$?

Hint: Let \mathfrak{m} be a maximal ideal and $\phi : A^n \to A^m$ be an isomorphism. Consider tensoring the morphism ϕ by A/\mathfrak{m} .

(5) Let M be an A-module. M is called *finitely presented* if there is an exact sequence $F_1 \to F_0 \to M \to 0$ with F_0, F_1 finitely generated free A-modules (hence $F_0 \cong A^{n_0}, F_1 \cong A^{n_1}$ for $n_0, n_1 \in \mathbb{N}$).

Prove that if M is a finitely presented and if there is a short exact sequence $0 \to K \to N \to M \to 0$ with N finitely generated, then K is finitely generated as well.

Hint: Construct a commutative diagram of the following form:

$$A^{n_1} \longrightarrow A^{n_0} \longrightarrow M \longrightarrow 0$$

$$\downarrow h_1 \qquad \downarrow \qquad \parallel$$

$$0 \longrightarrow K \xrightarrow{f} N \xrightarrow{g} M \longrightarrow 0.$$