ALGEBRA 2

ÜBUNGSBLATT 6

- (1) Let M be an A-module. Show that:
 - (a) If M is projective, then it is flat.
 - (b) The converse holds if A is local and M is finitely presented. *Hint:* Show directly that M is free.

Remark (b) is also true for non-local rings, which will follow from localisation. This will appear in a future exercise sheet.

(2) Let $(M_i)_{i \in I}$ be a family of A-modules, Show:

$$\bigoplus_{i \in I} M_i \text{ is flat} \iff M_i \text{ is flat for all } i \in I.$$

(3) (Universal property of scalar extension.) Let $f : A \to B$ be a ring homomorphism. Let M be an A-module and $\varphi : M \xrightarrow{1 \otimes \operatorname{id}_M} M_B$. Show that for every B-module N and any A-linear map $\psi : M \to N$ there is a unique B-linear map $\gamma : M_B \to N$ such that $\psi = \gamma \circ \varphi$.

In other words, prove that

$$\operatorname{Hom}_B(B \otimes_A M, N) \xrightarrow{\cong} \operatorname{Hom}_A(M, N), \quad h \mapsto h \circ \varphi$$

is a $(natural^1)$ isomorphism.

(4) Let N be an A-module and consider a short exact sequence of A-modules

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0.$

Prove that after apply Hom one gets the following exact sequence

$$0 \longrightarrow \operatorname{Hom}_{A}(N, M') \longrightarrow \operatorname{Hom}_{A}(N, M) \longrightarrow \operatorname{Hom}_{A}(N, M'').$$

Show, by providing an example, that the last map in the above sequence is not necessarily surjective.

¹Ignore this word if it doesn't make sense to you.

- (5) Let M_1, M_2 and N_1, N_2 be A-modules.
 - (a) Prove that there is an A-linear map

$$\operatorname{Hom}_A(M, M') \otimes_A \operatorname{Hom}_A(N, N') \to \operatorname{Hom}_A(M \otimes_A N, M' \otimes_A N')$$

which sends a simple tensor $\varphi \otimes \psi$ to the linear map $\varphi \otimes \psi$.

- (b) Prove that this is an isomorphism if all modules are finitely generated and free.
- (c) Let A = k be a field and take M and N finite dimensional. For $\varphi \in \text{Hom}_k(M, M)$ and $\psi \in \text{Hom}_k(N, N)$ show that

$$\operatorname{tr}(\varphi \otimes \psi) = \operatorname{tr}(\varphi) \operatorname{tr}(\psi) \text{ and } \operatorname{det}(\varphi \otimes \psi) = \operatorname{det}(\varphi)^{\dim N} \operatorname{det}(\psi)^{\dim M}.$$

Hint: Show and use that $\varphi \otimes \psi = (\varphi \otimes id_N) \circ (id_M \otimes \psi)$.

Definition: Let A be a ring and B an A-algebra. Define the module of Kähler differentials of B over A as follows

$$\Omega^1_{B/A} := \left(\bigoplus_{f \in B} B \cdot df \right) / R \; .$$

This is a quotient of a free *B*-module (generated by symbols df for each element $f \in B$) by the submodule *R*, generated by the following relations:

- (a) d(f+g) = df + dg (additivity) (b) d(fg) = f(dg) + g(df) (product rule) (c) da = 0 for every $a \in A$ (zero on 'constants').
- (6*) (a) Consider A = k and B = k[x, y]. Show that d(3xy²) = 3y² ⋅ dx + 6xy ⋅ dy. In general, show that for any f ∈ B, we have that df = ∂f/∂x dx + ∂f/∂y dy. Hint: Prove this for monomials via the product rule and induction, then use additivity. Prove that

$$\Omega^1_{k[x,y]/k} \cong B \cdot dx \oplus B \cdot dy.$$

(b) Consider a field extension L/K and consider L as a K-algebra. Prove that L/K is separable if and only if $\Omega^1_{L/K} = 0$.