ALGEBRA 2

ÜBUNGSBLATT 9

(1) Let V be a finite dimensional k-vector space, where k is a field. Pick some element $\varphi \in \operatorname{End}_k(V)$ and consider the k-algebra morphism

 $k[x] \longrightarrow \operatorname{End}_k(v), \quad x \longmapsto \varphi.$

Denote the kernel $I_{\varphi} = (p_{\varphi})$ and consider the ring

$$A_{\varphi} = k[x]/I_{\varphi}.$$

- (a) What is p_{φ} known as in Linear Algebra?
- (b) Take $\overline{k} = k$ to be algebraically closed. Exhibit a bijection between $\text{Spec}(\varphi)$, consisting of all eigenvalues and $\text{Spec}(A_{\varphi})$.
- (c) To which 'parts' of p_{φ} does $\operatorname{Spec}(A_{\varphi})$ correspond if k is not necessarily algebraically closed?

(2) (a) Given a ring homomorphism $\varphi: A \to B$, show that the map

$$\varphi^*: Y = \operatorname{Spec}(B) \longrightarrow X = \operatorname{Spec}(A), \quad \mathfrak{p} \longmapsto \mathfrak{p}^c = \varphi^{-1}(\mathfrak{p})$$

is well-defined and that if $f \in A$, then $(\varphi^*)^{-1}(X_f) = Y_{\varphi(f)}$.

Remark: This implies that φ^* is a continuous map.

- (b) Consider a ring A and a multiplicatively closed subset S of A. Let $\phi : A \to S^{-1}A$ be the canonical ring homomorphism. Show that $\phi^* : \operatorname{Spec}(S^{-1}A) \to \operatorname{Spec}(A)$ is a homeomorphism onto its image in $X = \operatorname{Spec}(A)$. In particular, prove that if $f \in A$, then $\operatorname{Spec}(A_f)$ in X is the basic open set X_f (compare with the third exercise sheet).
- (c) Conclude that any $X_f \subseteq X$ with the subspace topology is quasi-compact.

Definition A topological space X is *irreducible* if for every decomposition $X = X_1 \cup X_2$ with X_1, X_2 closed subsets of X, then $X = X_1$ or $X = X_2$.

For example, the space X = Spec(k[x, y]/(xy)) is not irreducible as

$$X = V(x) \cup V(y) = \operatorname{Spec}(k[x, y]/(x)) \cup \operatorname{Spec}(k[x, y]/(y))$$

- (3) Let $f: X \to Y$ be a continuous map between topological spaces. Show that for every irreducible subspace $V \subset X$ the image f(V) in Y is irreducible.
- (4) Let X = Spec(A). Show that
 - (a) $Y \subset X$ is irreducible if and only if I(Y) is a prime ideal of A, where $I(Y) = \bigcap_{\mathfrak{p} \in Y} \mathfrak{p}$.
 - (b) Conclude that X is irreducible if and only if the nilradical N(A) is a prime ideal if and only if there is a unique minimal prime ideal p.
 Suppose that p is indeed the unique minimal prime. Must we have p = 0?
- (5) Let X = Spec(A) and $Y \subset X$ be a subset. Recall $V(E) := \{\mathfrak{p} \in \text{Spec} A \mid E \subset \mathfrak{p}\}$. Show the following:
 - (a) Let $x = \mathfrak{p}_x \in X$ be a point. Then $\overline{\{x\}} = V(\mathfrak{p}_{\mathfrak{x}})$. Hence x is a *closed point* if and only if \mathfrak{p}_x is maximal.
 - (b) $V(I(Y)) = \overline{Y}$.
 - (c) Y is dense in X if and only if $I(Y) = \mathcal{N}(A)$, the nilpotent radical of A.
 - (d) Let X be irreducible. Every non-empty open subset U of X is dense.